What Can a Neuron Learn with Spike-Timing-Dependent Plasticity?

نویسندگان

  • Robert A. Legenstein
  • Christian Naeger
  • Wolfgang Maass
چکیده

Spiking neurons are very flexible computational modules, which can implement with different values of their adjustable synaptic parameters an enormous variety of different transformations F from input spike trains to output spike trains. We examine in this letter the question to what extent a spiking neuron with biologically realistic models for dynamic synapses can be taught via spike-timing-dependent plasticity (STDP) to implement a given transformation F. We consider a supervised learning paradigm where during training, the output of the neuron is clamped to the target signal (teacher forcing). The well-known perceptron convergence theorem asserts the convergence of a simple supervised learning algorithm for drastically simplified neuron models (McCulloch-Pitts neurons). We show that in contrast to the perceptron convergence theorem, no theoretical guarantee can be given for the convergence of STDP with teacher forcing that holds for arbitrary input spike patterns. On the other hand, we prove that average case versions of the perceptron convergence theorem hold for STDP in the case of uncorrelated and correlated Poisson input spike trains and simple models for spiking neurons. For a wide class of cross-correlation functions of the input spike trains, the resulting necessary and sufficient condition can be formulated in terms of linear separability, analogously as the well-known condition of learnability by perceptrons. However, the linear separability criterion has to be applied here to the columns of the correlation matrix of the Poisson input. We demonstrate through extensive computer simulations that the theoretically predicted convergence of STDP with teacher forcing also holds for more realistic models for neurons, dynamic synapses, and more general input distributions. In addition, we show through computer simulations that these positive learning results hold not only for the common interpretation of STDP, where STDP changes the weights of synapses, but also for a more realistic interpretation suggested by experimental data where STDP modulates the initial release probability of dynamic synapses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

A Criterion for the Convergence of Learning with Spike Timing Dependent Plasticity

We investigate under what conditions a neuron can learn by experimentally supported rules for spike timing dependent plasticity (STDP) to predict the arrival times of strong “teacher inputs” to the same neuron. It turns out that in contrast to the famous Perceptron Convergence Theorem, which predicts convergence of the perceptron learning rule for a strongly simplified neuron model whenever a s...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Learning Temporally Precise Spiking Patterns through Reward Modulated Spike-Timing-Dependent Plasticity

Precise neuronal spike timing plays an important role in many aspects of cognitive processing. Here, we explore how a spiking neural network can learn to generate temporally precise spikes in response to a spatio-temporal pattern, through spike-timing-dependent plasticity modulated by a delayed reward signal. An escape noise neuron is implemented as the readout to incorporate the effect of back...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural computation

دوره 17 11  شماره 

صفحات  -

تاریخ انتشار 2005